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SUMMARY

A numerical scheme has been developed for computing ¯uid ¯ow and heat transfer in periodically repeating
geometries. Unstructured solution-adaptive meshes are used in a cell-centred ®nite volume formulation. The
SIMPLE algorithm is used for pressure±velocity coupling. For periodic ¯ows the static pressure is decomposed
into a periodic component and one that varies linearly in the streamwise direction. The latter is computed from
the imposition of overall mass balance at the periodic boundary. A subiteration between the periodic pressure
correction equation and the correction to the linear component is used. For heat transfer a formulation using the
physical rather than the scaled temperature is employed. The scheme is applied to both laminar and turbulent
computations of periodic ¯ow and heat transfer in a variety of heat exchanger geometries; comparison with
published computations and experimental data is found to be satisfactory. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Periodic ¯ow and heat transfer occur widely in a variety of industrial applications. In compact heat

exchangers, for example, it is common to augment heat transfer by using arrays of ®ns.1 In

evaporators, elaborate beading and embossment patterns are frequently used to increase surface area

and to promote mixing.2 In condenser tubes, periodically interrupted ®ns are sometimes used to

destroy the integrity of the refrigerant ®lm and promote heat transfer. In other areas such as

electronics cooling, electronic components are frequently modelled as in®nite arrays of heat

generating blocks to facilitate analysis.3 Periodically arranged turbulators are used in turbine blade

cooling passages to enhance heat transfer.4 In many applications of industrial interest the geometries

involved are quite complex and the periodically repeating domains are not simple blocks.

Computational ¯uid dynamics (CFD) has been used extensively to analyse periodic ¯ow and heat

transfer. Patankar et al.5 generalized the concept of fully developed ¯ow to ducts whose geometry

varied periodically in the streamwise direction. The analysis included periodicity with speci®ed

temperature and speci®ed ¯ux boundary conditions. For the speci®ed temperature case, an iterative
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procedure for computing the dimensionless streamwise bulk temperature gradient was devised.

Kelkar and Patankar6 used a similar discretization to solve an antiperiodic problem for ¯ow and heat

transfer in a periodic plate channel. Unlike Patankar et al.,5, they used actual rather than scaled

temperature as the dependent variable and greatly simpli®ed the procedure for calculating the

streamwise bulk temperature gradient. Sathyamurthy and Karki7 devised an iterative scheme for the

computation of the streamwise pressure gradient; this was used to compute laminar ¯ow over heated

blocks in an electronics cooling application in Reference 3. Most of these studies used a staggered

mesh arrangement with a control volume discretization. The SIMPLE algorithm8 was used for

pressure velocity coupling.

Most published ®nite volume schemes in this area employ either regular3,5,6 or body-®tted9,10

meshes with a single-block mesh topology. Although a single- or multiblock mesh is adequate for the

simple geometries considered above, it is inconvenient to use when realistic heat exchanger

geometries such as those described in Reference 1 are to be considered. Finite element schemes that

provide greater mesh ¯exibility have also been published (see e.g. Reference 11).

In the last few years, unstructured mesh methods have been developed which greatly ease mesh

restrictions and which permit solution adaption. Unstructured mesh schemes for incompressible ¯ows

were developed during the 1980s using the control volume ®nite element method (CVFEM).12 This

method attempted to marry the geometric ¯exibility of ®nite element schemes with the conservation

property of ®nite volume schemes. More recently, researchers have attempted to extend the

incompressible ¯ow methodology of Reference 8 to unstructured meshes.13±16 Here a conservative

®nite volume formulation is applied to arbitrary polyhedra and the SIMPLE family of algorithms is

used. Though these methods continue to evolve, preliminary computations have been shown to match

standard benchmarks well.

In this paper we use the ®nite volume methodology presented in Reference 16 in developing a

solution procedure for periodic ¯ow and heat transfer. The procedures in References 5 and 6 are

generalized for unstructured solution-adaptive meshes. The method is validated against the published

literature and shown to perform satisfactorily.

2. FLOW AND TEMPERATURE PERIODICITY

Consider a domain with periodic boundaries separated by a translation vector ~L, as shown in Figure 1.

The two periodic boundaries of the domain are denoted as periodic and periodic shadow for

convenience. This domain represents one of a series of periodic modules translated by ~L. There may

be other periodic boundaries in the domain, but there is no net in¯ow through any of these

Figure 1. Perodic domain
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boundaries. As in Reference 5, we may write the following relationships for the velocity ui and the

static pressure P at position ~r:

ui�~r� � ui�~r � ~L� � ui�~r � 2~L� � � � � ; �1�

P�~r� ÿ P�~r � ~L� � P�~r � ~L� ÿ P�~r � 2~L� � � � � : �2�
For periodic ¯ows the pressure gradient may be decomposed into two partsÐthe gradient of a

periodic component, @p=@xi, and the gradient of a linearly varying component, bêL:

@P

@xi

� beL;i �
@p

@xi

; �3�

where eL;i is the i-component of the unit vector êL in the direction ~L.

Periodic heat transfer is possible for either Dirichlet or Neumann boundary conditions on

temperature. Here the scaled temperature

y�~r� � T �~r� ÿ Tw

Tb�~r� ÿ Tw

�4�

is periodic. For Dirichlet boundary conditions on temperature we may write

T �~r� ÿ Tw

Tb�~r� ÿ Tw

� T �~r � ~L� ÿ Tw

Tb�~r � ~L� ÿ Tw

� T �~r � 2~L� ÿ Tw

Tb�~r � 2~L� ÿ Tw

� � � � : �5�

For Neumann boundary conditions the quantity Tb ÿ Tw is constant across modules. Consequently,

we may simplify equation (5) to write

T �~r� ÿ Tb�~r� � T �~r � ~L� ÿ Tb�~r � ~L� � T �~r � 2~L� ÿ Tb�~r � 2~L� � � � � : �6�
Here the bulk temperature Tb is de®ned asR R

A
juieL;ijT dAR R

A
juieL;ij dA

� 0; �7�

where A is the area of cross-section.

3. GOVERNING EQUATIONS

The equations for conservation of mass, momentum and energy for the incompressible, steady ¯ow of

a Newtonian ¯uid are

@

@xi

�rui� � 0; �8�

@

@xj

�ruiuj� � ÿ
@p

@xi

ÿ beL;i �
@

@xj

�m� mt�
@ui

@xj

 !
� Fi; �9�

@

@xi

�ruicpT � � @

@xi

k � mt

sh

� �
@T

@xi

� �
� Sh: �10�

Fi contains those derivatives of the stress tensor not included in the diffusion term in the momentum

equations; it may also contain the contributions of body forces consistent with the periodicity of the

¯ow. To sustain periodicity, all ¯uid properties must be independent of temperature, though they may
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have a periodic spatial variation. The energy source term Sh must also be temperature-independent

and spatially periodic; non-zero values are permissible for Neumann boundary conditions only.

Turbulence is computed using the high-Reynolds-number k ±e model17

@

@xi

�ruik� �
@

@xi

m� mt

sk

� �
@k

@xi

� �
� Gk ÿ re; �11�

@

@xi

�ruie� �
@

@xi

m� mt

se

� �
@e
@xi

� �
� C1e

e
k

Gk ÿ C2er
e2

k
: �12�

The turbulence viscosity mt is computed as17

mt � Cmrk2=e: �13�
The two-layer low-Reynolds number model described in Reference 18 is also implemented.

4. NUMERICAL METHOD

We describe brie¯y important components of the numerical method used to discretize the governing

equations. Details may be found in Reference 16. Cartesian velocities are used as the basis of the ¯ow

formulation. For heat transfer we use the temperature directly as the dependent variable, instead of

using y as done in Reference 5.

4.1. Domain discretization

The domain is discretized into arbitrary unstructured convex polyhedra. All transport variables are

stored at cell centres. The governing equations are integrated over the polyhedron. Consider the

differential equation for transport of a scalar quantitiy f:

@

@xi

�ruif� �
@

@xi

G
@f
@xi

� Sf: �14�

Integration and discretization about the control volume C0 shown in Figure 2 yieldsP
f

Jf ff �
P

f

Df � �SfDv�0; �15�

Figure 2. Control volume
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where Jf is the mass ¯ow rate de®ned as

Jf � rf
~Af � ~Vf : �16�

~Af is the outward-pointing area vector at face f . Df is the diffusive ¯ux entering C0 through face f

and the summations are over all the faces of the control volume. Thus

Df � �GHf�f � ~Af : �17�
For the face f between control volumes C0 and C1 in Figure 2 the diffusive ¯ux can be written as

Df � Gf

f1 ÿ f0

ds

~Af � ~Af

~Af � ês

 !
� �Hf � ~Aÿ �Hf � ês

~Af � ~Af

~Af � ês

 !
: �18�

Here ês is the unit vector along the line joining the cell centroids. The primary gradient (the ®rst term

on the RHS of the above equation) is treated implicitly. The secondary gradient (the second term on

the RHS) is zero for orthogonal quadrilateral=hexahedral meshes and for equilateral triangular/

tetrahedral meshes. It is computed explicitly. The derivative �Hf at the face is taken to be the average

of the derivatives at the two adjacent cells. The above treatment is the equivalent of a second-order

scheme for structured meshes.

The face value ff used in computing the convective ¯ux can be taken to be the value at the upwind

cell, yielding a ®rst order scheme. To achieve second order accuracy, a linear reconstruction

procedure similar to that of Barth and Jesperson19 is used to write the face value in terms of values in

the upwind cell:

ff � fupwind � Hfrupwind � dr
!
; �19�

where dr
!

is the vector directed from the centroid of the upwind cell to the centroid of the face. Hfr is

the reconstruction gradient of f evaluated using the divergence theorem:

Hfr �
a

Dv
P

f

� �ff
~Af �; �20�

where �ff is the average of the values of f at the adjacent cells and a is a factor used to ensure that the

reconstruction does not introduce local extrema. The limiter proposed by Venkatakrishnan20 is used

in the present work. The gradients used in the diffusion term in equation (18) are computed by

applying the divergence theorem with the reconstructed face values ff .

It is necessary to account for periodicity in computing cell derivatives and reconstruction gradients

and in the limiting procedures. For velocity and the periodic pressure component p this is

straightforward. For temperature, equations (5) and (6) are used to evaluate the temperature in the

cells in neighbouring modules, as explained in the subsections that follow.

4.2. Boundary conditions

In addition to cell centres, f is also stored at boundary face centroids. The boundary diffusion ¯ux

can then be linearized in the same manner as at an interior face, i.e., using equation(18). For the

boundary face in Figure 3 this yields

Df � Gf

fb ÿ f0

db

~Af � ~Af

~Af � êb

� Hf0 � ~Aÿ Hf0 � êb

~Af � ~Af

~Af � êb

; �21�
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where fb is the value at the boundary and êb is the unit vector directed from the cell centroid to the

boundary face centroid.

For Dirichlet boundary conditions, equation (21) is used to express the boundary diffusion ¯ux as a

linear function of the cell and boundary values of f. It is also used to compute the boundary ¯ux of f
for postprocessing. For Neumann boundary conditions the prescribed boundary ¯ux of f is included

directly in the ¯ux balance for the boundary cell. Equation (21) is then used to compute fb. This

boundary value is used for computing cell gradients during reconstruction as described above, and for

postprocessing.

At periodic boundaries the cells C0 and C1 in Figure 1 are considered to be neighbours and share a

common periodic face. Thus appropriate neighbour values for pressure and velocity are known. The

treatment of temperature is described in a later subsection.

The discretization procedure leads to a set of linear equations relating the value of f at the cell

centre to its cell neighbours:

apfp �
P
nb

anbfnb � b: �22�

Here nb is the number of cell neighbours. The above equation is underrelaxed, as described in

Reference 8. As in Reference 8, ap > 0 in the above equation.

4.3. Linear solver

The number of cell neighbours in equation (22) is arbitrary for an unstructured mesh.

Consequently, familiar line-iterative solvers and their cyclic variants, e.g. the cyclic tridiagonal

matrix algorithm (TDMA),5 cannot be used. Instead, the system is solved using an algebraic multigrid

procedure21 which constructs coarse level equations by clustering a ®ne level cell with a neighbour

for which the in¯uence coef®cient is the highest. The agglomeration procedures are applied across

periodic boundaries. A variety of multigrid cycles such as the V-, W- and Brandt cycles have been

implemented. For the examples in this paper the V-cycle is used for pressure and the Brandt cycle for

all other variables. A Gauss±Seidel relaxation procedure is used at each multigrid level. The

procedure is applied across periodic boundaries.

4.4. Discretization of the momentum equation

The periodic pressure p and the Cartesian components of velocity, ui, are stored at cell centres. The

momentum equation (9) is discretized using the procedure described. The periodic pressure gradient

is computed using linear reconstruction. The linear component of the gradient, b, is either given or

assumed temporarily known and is integrated in the same manner as the term Sf. Boundary

conditions are also treated as described above.

Figure 3. Boundary control volume
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4.5. Discretization of continuity equation

The continuity equation(8) is integrated over the control volume in Figure 2. A scheme similar to

that of Rhie and Chow22 is used to interpolate pressure to the cell face and to avoid pressure

checkerboarding. We de®ne the face mass ¯ow rate as

Jf � rf
~Af � ~Vf ÿ

rf Dv

�ap

p1 ÿ p0

ds
ÿ �Hpf � ~es�

� � ~Af � ~Af

~Af � ês

: �23�

Here ~Vf is the average value of velocity at the face and �ap is the average of the cell coef®cients ap.

The second term is a third-order added dissipation which prevents checkerboarding. The linear

pressure gradient b appears in ~Vf as the momentum-averaged value of bêL � �~Af =j~Af j�.
The discrete continuity equation is written asP

f

Jf � 0: �24�

We use a procedure similar to the SIMPLE algorithm8 to solve for pressure and velocity. If the

momentum equation (9) is solved with guessed values of the pressure gradients @p*=@xi and b*, the

resulting mass ¯ow rate Jf* on face f does not satisfy the discrete continuity equation (24). We

propose a correction J 0f , i.e.

Jf � Jf*� J 0f ; �25�
such that the corrected ¯ow rate Jf satis®es equation (24). Further, we postulate that

J 0f � ÿd1;f �p01 ÿ p00� ÿ d2;f b
0; �26�

where

d1;f �
rf Dv

�ap ds

~Af � ~Af

~Af � ês

; �27�

d2;f �
rf Dv

�ap

~Af � êL: �28�

Substituting equations (25) and (26) into equation (24) yields the pressure correction equation

app0p �
P
nb

anbp0nb � b0
P

f

d2;f � b: �29�

Here, as in Reference 8, anb � d1;f and ap �
P

nb anb. The term b is the net mass in¯ow
P

f Jf*. We

see that the correction to the linear pressure gradient, b0, appears in the correction equation for the

periodic pressure p.

4.6. Computation of b

Periodic ¯ows may be computed either for a speci®ed streamwise pressure gradient b or for a

speci®ed mass ¯ow rate M . If b is given, it is used as a known quantity in equation (9), and b0 is set

equal to zero in equations (26) and (29). However, for many problems of practical interest, M is given

and b must be computed.
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In order to ®nd b, we enforce overall mass balance. If the momentum equation (9) is solved with a

guessed value b*, the resulting mass ¯ow rate through the periodic boundary,

M* �P
pf

Jf*; �30�

does not satisfy overall mass balance. We require that the sum of all corrected face ¯ow rates through

the periodic boundary be equal to the desired ¯ow rate M :P
pf

Jf � M : �31�

Here, pf denotes the set of periodic faces. Using (25) and (26), we may write

b0 � ÿ
M ÿM*�P

pf

d1;f �p01 ÿ p00�P
pf

d2;f

: �32�

The corrections p00 and p01 are associated with the cells that lie on either side of the periodic boundary.

Equations (29) and (32) are solved alternately until convergence.

Once the corrections p0 and b0 are obtained, the face ¯ow rate Jf* is corrected using equation (25).

Cell pressure and b are corrected using

b � b*� abb
0; �33�

pp � pp*� app0p: �34�
For the co-located scheme used here, it is useful to correct cell velocities ui* computed from the

momentum equation

ui � ui*ÿ

P
f

�Af;i p0f � � Dvb0eL;i

ai
p

: �35�

Here, ai
p is the centre coef®cient of the momentum equation in the direction i and Af ;i is the i-

component of the face area vector ~Af .

The procedure for the computation of b described above is different from those used in the

literature.3,5 In Reference 5 it is recognized that the Reynolds number is the single governing

parameter in the problem; for every b there exists a unique Reynolds number (and vice versa).

Consequently, a physical property such as viscosity is iteratively changed to impose the correct

Reynolds number; the resulting b, suitably non-dimensionalized, is the desired dimensionless

streamwise pressure gradient. Kelkar et al.3 describe an iterative scheme for b whereby the velocities

ui are scaled by a factor g � M=M* every iteration to match the imposed ¯ow rate; the factor b is also

scaled by ga where a is an underrelaxation factor, typically chosen to be less than unity. The

procedure adopted here is similar to that used in parabolized Navier±Stokes solvers to compute the

streamwise pressure gradient.23 It is similar to the procedure described by Kelkar24 for single-block

structured meshes. Here the parameter b is the streamwise pressure gradient, assumed to be aligned

with one of the mesh directions, x, of the �x; Z� system, and M* in equation (31) is an average over all

x� constant grid lines.

4.7. Computation of temperature ®eld

The energy equation (10) is discretized using the procedures described previously. Temperature is

used as the dependent variable. For cells with periodic or periodic shadow faces, equation (22)
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requires temperature in adjacent modules. We describe below the procedure used to obtain neighbour

temperature.

Dirichlet boundary condition. Here the (same) temperature Tw is speci®ed on all walls in the

domain. For this case the procedure adopted is similar to that in Reference 6. Each iteration of the

calculation procedure we compute the factor a de®ned as

a � �Tb ÿ Tw�pf

�Tb ÿ Tw�psf

: �36�

Here pf denotes the set of periodic faces in Figure1; psf denotes the periodic shadow faces. The bulk

temperature may be considered given at the in¯ow periodic boundary, say pf; thus �Tb�pf is known.

The bulk temperature at the out¯ow boundary, �Tb�psf , may be found from equation (7) using existing

values of T �x; y�. Thus a is nominally known and the temperatures T0 and T2 are related by

T2 �
T0

a
� 1� 1

a

� �
Tw: �37�

Similarly, T1 and T3 are related by

T3 � aT1 � �1ÿ a�Tw: �38�
The relationships (37) and (38) are used in an implicit manner and modify the coef®cients anb and

ap in equation (22). The Dirichlet problem is non-linear, since the eigenvalue a is not known a priori

and must be found iteratively as part of the solution.

Neumann boundary condition. Consider the case where the heat ¯ux q00�x; y� enters the domain at

the walls; a heat source Sh�x; y� may also be present. We may compute the change in bulk temperature

across the domain, DTb � �Tb�psf ÿ �Tb�pf by performing a heat balance for the module:

DTb �

P
wf

q00f Af �
P

c

DvShP
pf

cpJf

: �39�

The heat ¯ux is summed over all wall faces (wf) in the domain. The heat source is summed over all

cells (c) in the domain. The relationship between the temperatures T0 and T2 may be written as

T2 � T0 � DTb: �40�
Similarly, the temperatures T1 and T3 are related by

T3 � T1 ÿ DTb: �41�
These relations are incorporated in an implicit manner in equation (22), and modify the term b.

Unlike the case of Dirichlet boundary conditions, the speci®ed ¯ux problem is a linear one.

Furthermore, the formulation given above admits T and T � C as solutions, where C is an arbitrary

constant. In practice the temperature level is determined by the speci®ed inlet bulk temperature. To

ensure the stability of the multigrid linear solver to round-off, we discard one discrete equation in the

algebraic system (22) and replace it with a ®xed temperature. After the temperature solution is

obtained, all temperatures are scaled using equation (4) to the desired inlet bulk temperature.

4.8. Overall solution procedure

The solution procedure for computing periodic ¯ow is summarized below.
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1. Solve the momentum equations with current values of pressure and the streamwise gradient, p*

and b*.

2. Compute the face mass ¯ow rates Jf*

3. Iterate between the p0-equation (29) and the b-correction equation (32) until p0 and b0 stabilize.

4. Correct the face ¯ow rate Jf* to obtain Jf . This will satisfy both local and global continuity.

Correct p* and b*, as well as the cell-centred velocity ui*.

5. Check for convergence. If unconverged, repeat steps 1±4.

Once a converged ¯ow solution is obtained, the temperature may be computed. The solution

procedure for computing the temperature ®eld is summarized below.

1. For the Dirichlet case, compute the eigenvalue a. For the Neumann case, compute the bulk

temperature difference DTb; the latter need be computed only once for the entire calculation.

2. Use a (or DTb) to compute the modi®ed coef®cients and source terms in equation (22).

3. Solve the temperature equation.

4. For Neumann boundary conditons, repeat steps 1±3 until convergence if secondary gradients

exist; else the solution is complete. For Dirichlet boundary conditions, repeat steps 1±3 until

convergence.

5. For Neumann boundary conditons, scale the temperature to obtain the desired bulk temperature.

4.9. Grid adaption

The solution algorithm described in previous subsections can handle both the traditional h-

re®nement25 as well as grids with `hanging nodes' resulting from non-conformal grid adaption. In the

latter case, cells marked for adaption are subdivided by introducing midpoint nodes at edges and=or

cell and face centres. Since the discretization scheme can be used for arbitrary polyhedra, the non-

conformal interfaces created by hanging node adaption require no special treatment.

4.10. Non-periodic meshes

Most published work for periodic ¯ow has required that the underlying mesh be periodic. One

advantage of admitting arbitrary polyhedra is that non-periodic meshes can be handled easily.

Consider the non-periodic mesh shown in Figure 4. The periodic boundary is non-conformal since the

faces of cells on either side are not aligned. However, if the non-conformal faces are split into aligned

subfaces, the cells on either side of the boundary can be considered to be n-sided polyhedra (a±b±c±

d±e in Figure 4, for example). The procedures outlined above can then be used without modi®cation.

Thus it is not necessary to have access to mesh generators capable of generating periodic meshes.

5. RESULTS

5.1. Fully developed ¯ow in a triangular duct

Flow and heat transfer in triangular ducts are of considerable importance in louvred ®n heat

exchangers and extensive analyses of this geometry have been published.26,27 The equations

governing fully developed ¯ow and heat transfer are two-dimensional; the axial velocity and a scaled

temperature may be solved on the triangle to obtain the velocity and temperature ®elds. Our intent is

to validate the method developed above; consequently, we compute three-dimensional ¯ow and heat

transfer using a prismatic domain bounded by two periodic boundaries, as shown in Figure 5. The

ducts considered are isosceles; the apex angle is 2a.
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Because of symmetry, only one half of the cross-section is considered. The domain is discretized

using prismatic cells; a typical mesh is shown in Figure 6. The axial mesh is deliberately kept only

®ve cells deep because of the fully developed nature of the ¯ow. A ratio of triangle base to length of

5�0 is used. Mesh sizes range from 648 to 3424 cells in the cross-section, depending on the apex

angle. The mesh size employed in each case is listed in Tables I and III respectively.

Computations are performed for 2a � 20�; 60� and 90�. A ¯ow rate is prescribed and the

corresponding pressure drop computed using the iterative procedure described above. Both laminar

and turbulent ¯ows are considered. For turbulence the two-layer k±e model described in Reference 18

is used. Heat transfer is computed only for laminar ¯ow. Both the speci®ed temperature and the

speci®ed heat-¯ux boundary conditions are considered. For the latter case, the heat ¯ux is assumed to

be axially and peripherally uniform.

Tables I and II present the computed fRe product and Nusselt number respectively for laminar

¯ow. NuT corresponds to the Nusselt number for the speci®ed temperature case; NuH corresponds to

that for the speci®ed heat ¯ux case. The computed results compare well with values compiled by

Shah and London27 from a variety of variational, least squares and ®nite difference solutions in the

literature. A typical plot of b versus iteration is shown in Figure 7 for 2a � 60�; b is found to reach

99% of its converged value within 100 iterations. The local velocity distribution for 2a � 40� is

plotted in Figure 8 for different radial lines (corresponding to different values of the angle y shown in

Figure 4. Non-periodic mesh in periodic domain

Figure 5. Triangular ductÐschematic diagram

PERIODIC FLOW AND HEAT TRANSFER 669

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 659±677 (1997)



Figure 5). The comparison with a point-matching solution obtained by Sparrow28 in Figure 8 is good.

For turbulent ¯ow the correlation parameter

C � 4fRe0�25 �42�
is tabulated for different values of the apex angle in Table III for Re� 10,000. Experimental values

are interpolated from the data presented in Reference 26. Computed values compare reasonably well

with the data.

5.2. Flow over a tube bundle

Transverse ¯ow over an in-line tube bundle is computed using the methodology described above.

The geometry is shown in Figure 9. The ¯ow is laminar and is governed by the Reynolds number Re

which is de®ned as

Re � rDUm=m; �43�
where Um is the average velocity in the minimum transverse gap between the tubes. Computations

are done for two values of the Reynolds number, Re� 10 and 100. A single geometry corresponding

to ST=D � SL=D � 1�25 is used.

A triangular mesh of 3160 cells is used. Hanging node adaption is used to concentrate cells in

regions of high gradient; the resulting mesh is shown in Figure 10. The mass ¯ow rate corresponding

to the desired Reynolds number is prescribed and the pressure coef®cient, de®ned as

Cp �
DP

0�5rU 2
m

; �44�

Figure 6. Triangular ductÐprismatic mesh

Table I. Triangular ductÐlaminar ¯ow friction factors

2a (deg) Cross-section grid size Computed Shah and London Difference (%)

20 3424 12�90 12�822 0�65
40 1584 13�31 13�22 0�66
60 1080 13�40 13�33 0�51
90 648 13�174 13�153 0�16

670 J. Y. MURTHY AND S. MATHUR

INT. J. NUMER. METH. FLUIDS, VOL. 25: 659±677 (1997) # 1997 by John Wiley & Sons, Ltd.



Table II. Triangular ductÐlaminar ¯ow Nusselt number

2a (deg) Computed Shah and London Difference (%)

NuT NuH NuT NuH NuT NuH

20 2�07 0�375 2�0 0�366 3�5 2�5
40 2�43 1�42 2�39 1�38 1�7 2�6
60 2,51 1,91 2�47 1�89 1�6 0�8
90 2�38 1�37 2�34 1�34 1�5 2�0

Figure 7. Triangular ductÐconvergence history for b

Figure 8. Triangular ductÐaxial velocity pro®les for 2a� 40�

Table III. Triangular ductÐcorrelation parameter for turbulent ¯ow

2a (deg) Cross-section
grid size

Computed Experimental Difference (%)

20 3424 0.278 0.285 2.4
40 1584 0.283 0.301 6.0
60 1080 0.295 0.301* 2.0

* Schiller's data
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computed. Here DP is the pressure difference resulting from the axial pressure gradient b across a

periodic module.

Table IV compares computed values of Cp with those measured by Antonopoulos.29. The

agreement with experimental data is good.

5.3. Flow and heat transfer in a serrated channel

Turbulent ¯ow and heat transfer are computed for periodic ¯ow in a serrated channel. The

geometry is shown in Figure 11. Flow enters the domain at a Reynolds number of 1�26 104 (based

on the mid-channel height Hm and the average mid-channel velocity). A speci®ed heat ¯ux condition

is imposed on both the ¯at and serrated walls. A single geometry corresponding to Hs=Hm � 1�0,

Ls=Hm � 8 and L=Hm � 8�075 is considered. The objective is to predict periodic ¯ow and heat

transfer and to compare predictions with measurements in Reference 30.

Figure 10. Tube bundleÐadapated mesh

Table IV. Tube bundleÐcomparison of computed Cp with
experiment

Re Computed Experimental Difference (%)

10 17.77 17.96 1.06
100 1.949 1.946 0.15

Figure 9. Tube bundleÐshematic diagram
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The high-Reynolds-number k±e model is employed.17. The mass ¯ow rate corresponding to the

desired Re is prescribed and the axial pressure gradient computed as a part of the solution. The

calculation domain is shown in Figure 12. It consists of quadrilateral mesh of 2400 cells with non-

conformal periodic boundaries.

The computed axial velocity U=Um is compared with experimental data from Reference 30 in

Figure 13. Figure 14 shows a comparison of the local Nusselt number Nu, with experimental data. Nu

is de®ned as

Nu � q00Hm

k�Tw ÿ Tb�
: �45�

The comparison with data is reasonable and of the same order as the k±e model predictions in

Reference 30 (not shown).

Figure 11. Serrated channelÐschematic diagram

Figure 12. Serrated channelÐ(a) mesh and (b) detail of periodic boundary
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6. CLOSURE

A novel conservative ®nite volume scheme is used to develop a solution procedure for periodic ¯ow

and heat transfer in complex geometries. The computational scheme employs unstructured convex

polyhedra and admits solution adaption. Previously published formulations for periodic ¯ow are

generalized to unstructured meshes. A correction procedure is used for computing the streamwise

pressure gradient subject to a mass ¯ow rate constraint. The method is applied to ¯ow and heat

transfer in a variety of heat exchanger geometries and its geometric ¯exibility demonstrated through

the use of prismatic, triangular and quadrilateral cells with hanging node adaption and non-conformal

Figure 13. Serrated channelÐaxial velocity comparisons: �, experiment; Ð, computed

Figure 14. Serrated channelÐlocal Nusselt number distribution: �, experiment; Ð, computed
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periodic interfaces. Both laminar and turbulent ¯ow problems are computed and good agreement with

published numerical and experimental data is found.
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APPENDIX: NOMENCLATURE

anb neighbour coef®cient

ap neighbour coef®cient

A area
~A area vector

cp speci®c heat at constant pressure

D diffusive ¯ux

Fi body force in direction i

Gk turbulence production

J mass ¯ow rate

k turbulence kinetic energy, thermal conductivity
~L periodic translation vector

M imposed mass ¯ow rate

p periodic component of static pressure

P static pressure

q00 heat ¯ux

r position vector

Sh heat source

Sf source of f
T temperature

Tb bulk temperature

Tw wall temperature

ui velocity component in Cartesian direction i

xi co-ordinate direction

Greek letters

a bulk temperature ratio

ap; ab underrelaxation factors

b streamwise pressure gradient

G diffusion coef®cient

DTb bulk temperature rise across module

Dv volume of control volume

e turbulence dissipation rate

y periodic temperature

m molecular viscosity

mt turbulence viscosity

r density
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sh turbulence Prandtl number for temperature

sk turbulence Prandtl number for k

se turbulence Prandtl number for e
f transported scalar

Subscripts and superscripts

f face

nb neighbour cells

pf periodic face

psf periodic shadow face

( )* value after solving momentum equation

� �0 correction

OtherP
f summation over all faces of control volumeP
nb summation over all cell neighboursP
pf summation over all faces on periodic boundary
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